一次函数教案-利来w66国际

一次函数教案

作为一名教学工作者,就难以避免地要准备教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。如何把教案做到重点突出呢?以下是小编为大家收集的一次函数教案,欢迎阅读与收藏。

一次函数教案1

教学目标

1.知识与技能

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.

2.过程与方法

经历探索一次函数的应用问题,发展抽象思维.

3.情感、态度与价值观

培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值.

重、难点与关键

1.重点:一次函数的应用.

2.难点:一次函数的应用.

3.关键:从数形结合分析思路入手,提升应用思维.

教学方法

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.

教学过程

一、范例点击,应用所学

例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.

y=

例6a城有肥料吨,b城有肥料300吨,现要把这些肥料全部运往c、d两乡.从a城往c、d两乡运肥料的费用分别为每吨20元和25元;从b城往c、d两乡运肥料的费用分别为每吨15元和24元,现c乡需要肥料240吨,d乡需要肥料260吨,怎样调运总运费最少?

解:设总运费为y元,a城往运c乡的肥料量为x吨,则运往d乡的.肥料量为(-x)吨.b城运往c、d乡的肥料量分别为(240-x)吨与(60 x)吨.y与x的关系式为:y=20x 25(-x) 15(240-x) 24(60 x),即y=4x 10040(0≤x≤).

由图象可看出:当x=0时,y有最小值10040,因此,从a城运往c乡0吨,运往d乡吨;从b城运往c乡240吨,运往d乡60吨,此时总运费最少,总运费最小值为10040元.

拓展:若a城有肥料300吨,b城有肥料吨,其他条件不变,又应怎样调运?

二、随堂练习,巩固深化

课本p119练习.

三、课堂,发展潜能

由学生自我本节课的表现.

四、布置作业,专题突破

课本p120习题14.2“议一议”小明的想法;241页联系拓广4)?方法越多越好!

三、练一练

1、直角三角形的两锐角之和是多少度?正三角形的一个内角是多少度?请证明你的结论。

2、已知:如图,在△abc中,∠a=60°,∠c=70°,点d和点e分别在ab和ac上,且de∥bc

求证:∠ade=50°

3、如图,在△abc中,de∥bc,∠dbe=30°, ∠ebc=25°,求∠bde的大小。

4、证明:四边形的内角和等于360°

一次函数教案10

教学过程设计

一、复习回顾

1.一次函数的定义。

2.一次函数的图象。

3.直线y=kx b与方程的联系。

那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。

教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。

设计意图:回顾所学知识作好新知识的衔接。

二、导探激励

问题1:我们来看下面两个问题有什么关系?

1.解不等式5x 6>3x 10.

2.当自变量x为何值时函数y=2x—4的值大于0?

教师活动:引导学生分别从数和形两个角度理解这两个问题的关系,归纳出一般形式结论。由上面两个问题的关系,我们能得到“解不等式ax b>0”与“求自变量x?在什么范围内,一次函数y=ax b的值大于0”之间的关系,实质上是同一个问题.

由于任何一元一次不等式都可以转化的`ax b>0或ax b0?

(3)x取哪些值时,2x—53?

教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。

设计意图:问题2可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图

象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。

学生可以用不同方法解答,教师意图是尽量用图象求解。

问题3:用画函数图象的方法解不等式5x 42时,对于同一个x,直线y=5x 4?上的点在直线y=2x 10上的相应点的下方,这时5x 40.

2.利用图象解不等式5x—1>2x 5.

五.课时小结

本节我们学会了用一次函数图象来解一元一次不等式.虽说方法未必简单,但我们从函数的角度来重新认识不等式,发现了一次函数、一元一次不等式之间的联系,能直观看到怎样用图形来表示不等式的解,对我们以后学习很重要.

六.课后作业

习题14.3─3、4、7题.

七.活动与探究

a、b两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾.a商场所有商品8折出售,b商场消费金额超过200元后,可在这家商场7折购物.?试问如何选择商场来购物更经济

教学反思:

本堂课在设计上可以跳出教材,根据学生的实际情况,在问题1中可设计一

个简单一点的不等式,待学生会将不等式转化为一次函数分析并用图像解决时在增加难度,放在问题3中一并解决,这样学生在接受上不会太难,也不会导致时间分配不合理,以至设计的内容无法完成。另外,这充分发挥学生的主体性,让学生通过观察及操作发现一次函数与一元一次不等式的关系及用一次函数解决一元一次不等式的方法。

一次函数教案11

教学目标

1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。

教学重点

1、一次函数、正比例函数的概念及两者之间的关系。

2、会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、

课件教学过程

一、创设问题情境,引入新课

1、简单复习函数的概念(设在某一变化过程中有两个变量x和y,如果,那么我们称y是x的函数,其中x是自变量,y是因变量)

2、演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么?

3、汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?

二、新课学习

1、做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。

2、一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3 0.5x、y=100—0.18x在形式上有什么相同之处?

让学生分析出他们的共同点:

①左边都是因变量,右边都是含自变量的代数式;

②自变量x与因变量y的次数都是1;

③从形式上看,形式都为y=kx b,k,b为常数。

问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx b(k,b为常数,k≠0)的'形式,则称y是x的一次函数(x是自变量,y是因变量)。

问:一次函数y=kx b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

3、例题学习

例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中习题6.2试一试

一次函数教案12

一、复习目标

知识目标:了解一次函数的概念,掌握一次函数的图象和性质;能正确画出一次函数的图象,并能根据图象探索函数的性质;能根据具体条件列出一次函数的关系式。

能力目标:理解数形结合的数学思想,强化数学的建模意识,提高利用演绎和归纳进行复习的能力。

情感目标:通过对零散知识点的系统整理,让学生认识到事物是有规律可循的,同时帮助他们提高复习的效果,增进数学学习的兴趣。

教学重点与难点

重点:根据不同条件求一次函数的解析式。

难点:根据函数图象探索其性质、体会函数与方程、函数与几何的转换。

教法与学法

教法分析:经过精心的整理,我把本单元的知识归纳成“六个知识要点”,采用的“演绎法”向学生传授。由于是复习课,我采用边讲边练和问题教学的方式。

学法指导:在这节课之前,我已经让全班同学拟定复习计划书,很多同学在计划书中都提出函数是难点,希望能多复习一点,我把这一信息反馈给班级,使全班同学都有一种意见得到尊重的满足感,并产生了强烈的主动求知欲望。另外,通过向学生展示我对本单元的归纳,培养学生自己动脑,自己归纳总结的能力,从而掌握一种良好的复习方法。

二、教学过程

(一)、知识回顾:由于是复习课,所以开门见山做课前练习。

(二)、提出“六个知识要点”:本单元的知识点比较繁多,而且在初中数学中所占的地位也比较重要。因此,我用“六点”来对于本单元进行复习:

知识点1、一般形式:

1、选择题:

分析:这类题目是考察同学们对函数解析式的特征的理解,在讲解时要突出两个疑难:一是一次函数中自变量的指数等于1,而不是0;二是一次函数解析式中自变量的系数不为零。

知识点2:直线与坐标的交点:函数y=kx b图象与x轴交点是()

与y轴交点是()

知识点3:一次函数图像与特征:是指一次函数的图象在坐标系中的位置,直线经过的象限:一般的,一条直线都经过三个象限,由于新教材不注重k,b的符号决定直线经过的象限的理解,且加上我班学生的基础较差,成绩一般。而题目又往往出这种知识点,因此我把这个知识点编成顺口溜:“大大一二三,小小二三四,大小一三四,小大一二四”,意思是当k>0,b>0是,直线经过一二三象限,以此类推。(课件中以表格的形式向同学展示)同学们很容易记住并理解,举一些例子加以说明:

知识点4:求解析式:一般用特定系数法求函数的解析式,特定系数法的一般步骤是“设→代→解→答”。当然,在一些日常生活实际问题中,则可以根据题意直接列出解析式,这里应该说明:自变量的取值范围是函数解析式的一部分,但具体求法不作要求。

知识点5:求交点、求面积:指一次函数的图象与坐标轴的'交点坐标以及两直线交点坐标的求法。直线y=kx b与x轴的交点坐标,与y轴的交点坐标是(0,b),这里要再次向学生解释一下,交点坐标是怎样得出来的。两条直线的交点坐标的求法:是将两直线的解析式联成一个二元一次方程组,解这个方程组,将它的解写成一个有序实数对,就是两直线的交点坐标。

求面积6:平移:

(三)、堂堂清:

(四)、小结:本节课归纳的“六个点”不是互相孤立,而是互相依托,互相渗透的,如求直线与坐标轴围成的直角三角形的面积时,需要先求出直线与坐标轴的交点坐标,求直线与坐标轴的交点坐标时,往往需要先求出直线的解析式。由此告诉同学们,只有将知识融会贯通,举一反三,才能学有所乐,学有所成。

(五)、布置作业:作业的布置应精心设计,体现分层教学和因材施教的原则。

1、必做题:配套的试卷1张。

2、选做题:课堂上布置的思考题。

一次函数教案13

教学目标: 1。知道一次函数与正比例函数的意义

2。能写出实际问题中正比例函数与一次函数关系的解析式。

3。掌握“从特殊到一般”这种研究问题的方法

教学重点:将实际问题用一次函数表示。

教学难点:将实际问题用一次函数表示。

教学方法:讲解法

教学过程:

一。 复习提问

1。 什么是函数?请举例说明。

2。 购买单价是0。4元的铅笔,总金额y(元)与铅笔数n(个)关系式是什么?

3。 在上述式子中变量是谁。常量是谁?自变量又是谁?

二。 讲解:

在前面我们遇到过这样一些函数:

y=x s=30t

y=2x 3 y=-x 2

这些函数都使用自变量的一次式来表示的,可以写成 y=kx b 的`形式

一般的,如果y=kx b(k , b是常数,k≠0), 那么y叫做x的一次函数。

特别的,当b=0时,一次函数y=kx b就成为y=kx(k是常数,k≠0),这时y就叫做x的正比例函数。

例一 :

一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒。

(1) 求小球速度v (米/秒)与时间t(秒)之间的函数关系式;

(2) 求3。5秒时小球的速度。

分析:v与t之间是正比例关系。

解: (1)v=2t

(2)t=3。5时,v=2×3。5=7(米/秒)

例二: 拖拉机工作时,油箱中有油40升。如果每小时耗油6升,求油箱中的余油量q(升)与工作时间t(时)之间的函数关系式。

分析:t小时耗油6t升,从原油油量中减去6t,就是余油量。

解:q=40 - 6t

课堂练习:

p96 1 ,2

小结:一次函数与正比例函数的意义,两者之间的关系,一次函数不一定是正比例函数,而正比例函数一定是一次函数,会将简单的实际问题用一次函数或正比例函数表示出来

作业:p97 1。2。3。4。

一次函数教案14

一、教材分析

本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.

二、学情分析

学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.

三、目标分析

1.教学目标

知识与技能目标

(1) 初步理解二元一次方程和一次函数的关系;

(2) 掌握二元一次方程组和对应的两条直线之间的关系;

(3) 掌握二元一次方程组的图像解法.

过程与方法目标

(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.

(3) 情感与态度目标

(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

2.教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系.

3.教学难点

数形结合和数学转化的思想意识.

四、教法学法

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

五、教学过程

本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.

第一环节: 设置问题情境,启发引导

内容:1.方程x y=5的解有多少个? 是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?

3.在一次函数y= 的图像上任取一点,它的坐标适合方程x y=5吗?

4.以方程x y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

意图:通过设置问题情景,让学生感受方程x y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的.关系.顺其自然进入下一环节.

第二环节 自主探索方程组的解与图像之间的关系

内容:1.解方程组

2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.

3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.

效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.

第三环节 典型例题

探究方程与函数的相互转化

内容:例1 用作图像的方法解方程组

例2 如图,直线 与 的交点坐标是 .

意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.

效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.

第四环节 反馈练习

内容:1.已知一次函数 与 的图像的交点为 ,则 .

2.已知一次函数 与 的图像都经过点a(2,0),且与 轴分别交于b,c两点,则 的面积为( ).

(a)4 (b)5 (c)6 (d)7

3.求两条直线 与 和 轴所围成的三角形面积.

4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

意图:4个练习,意在及时检测学生对本节知识的掌握情况.

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

第五环节 课堂小结

内容:以问题串的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1) 方程组的解是对应的两条直线的交点坐标;

(2) 两条直线的交点坐标是对应的方程组的解;

3.解二元一次方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.

第六环节 作业布置

习题7.7

附: 板书设计

六、教学反思

本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.

一次函数教案15

一、创设情境

问题画出函数y=的图象,根据图象,指出:

(1)x取什么值时,函数值y等于零?

(2)x取什么值时,函数值y始终大于零?

二、探究归纳

问一元一次方程=0的解与函数y=的图象有什么关系?

答一元一次方程=0的解就是函数y=的图象上当y=0时的x的值.

问一元一次方程=0的解,不等式>0的解集与函数y=的图象有什么关系?

答不等式>0的解集就是直线y=在x轴上方部分的x的'取值范围.

三、实践应用

例1画出函数y=-x-2的图象,根据图象,指出:

(1)x取什么值时,函数值y等于零?

(2)x取什么值时,函数值y始终大于零?

解过(-2,0),(0,-2)作直线,如图.

(1)当x=-2时,y=0;

(2)当x<-2时,y>0.

例2利用图象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.

解设y1=2x-5,y2=-x+1,

在直角坐标系中画出这两条直线,如下图所示.

两条直线的交点坐标是(2,-1),由图可知:

(1)2x-5>-x+1的解集是y1>y2时x的取值范围,为x>-2;

(2)2x-5<-x+1的解集是y1<y2时x的取值范围,为x<-2.

四、交流反思

运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.

五、检测反馈

1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?

2.画出函数y=3x-6的图象,根据图象,指出:

(1)x取什么值时,函数值y等于零?

(2)x取什么值时,函数值y大于零?

(3)x取什么值时,函数值y小于零?

3.画出函数y=-0.5x-1的图象,根据图象?

【一次函数教案】相关文章:

《一次函数》教案12-16

一次函数的的教案12-17

《一次函数解析式》教案12-16

《一次函数》教案,课件,试题12-16

教案《求一次函数的关系式》12-17

一次函数教法的分析与研究12-10

初二数学一次函数解析式的常见题型教案12-16

一次函数复习课教学反思10-18

《一次函数》复习课教学反思10-15

网站地图